
4 • VIRUS BULLETIN JUNE 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Unexpected Resutls [sic]
Peter Ferrie
Symantec Security Response, Australia

In early 2000, while studying the latest release of the
Portable Executable format documentation from Microsoft,
I noticed the word ‘callback’ in a section describing data
initialization. The section was called ‘Thread Local Storage
(TLS)’; in previous revisions of the documentation I had
disregarded it, considering it uninteresting, but this time it
had my full attention.

Where there are callbacks, there is executable code and
where there is executable code, there may be viruses.
However, it was a further two years before the appearance,
in 2002, of the first virus that is aware of Thread Local
Storage: W32/Chiton.

Blast from the Past

The virus writer’s handle will be familiar to some. Calling
himself ‘roy g biv’, perhaps from the colours of the rain-
bow, in 1993 he was the author of a virus that used the
circular partition trick to make it difficult to boot from a
floppy disk (by exploiting a bug that exists in MS-DOS
v4.00-7.00 – see VB, September 1995, p.12).

It seems that, once again, roy g biv has created a piece
of malware that may cause a few headaches for the anti-
virus developers.

Modern History

All threads of a process share the address space and global
variables of that process.

For applications that use a fixed number of unique threads,
each thread can allocate memory and store the pointer in a
separate global variable that the programmer has reserved
for the purpose.

A problem exists for applications whose maximum thread
count cannot be determined, or is unreasonably large, or
those which execute multiple instances of a single thread. In
these cases, there is no easy way to reserve a unique
memory location for each of the threads, without the use of
Thread Local Storage.

Thread Local Storage is a special storage class that is
supported by Windows NT, Windows 2000 and Windows XP.
There are two types: dynamic and static.

Dynamic Thread Local Storage

Dynamic Thread Local Storage is used by applications
containing threads whose size of local data is not constant,

or which could not be determined when the application
was compiled.

An application uses dynamic Thread Local Storage in the
following way.

When a process is created, it allocates a Thread Local
Storage index by calling the TLSAlloc() API. This index is
stored in a global variable of the process.

Each thread that is created will allocate memory for its
local data, then pass a pointer to this memory, and the
process’ Thread Local Storage index, to the TLSSetValue()
API. At any time, a thread can retrieve the pointer to its
local data by passing the process’ Thread Local Storage
index to the TLSGetValue() API.

The TLSGetValue() and TLSSetValue() functions access a
table in the operating system’s memory which is updated
dynamically whenever a thread-switch occurs. This is how
a single index can be used by all threads to access indi-
vidual values.

Static Thread Local Storage

Static Thread Local Storage is used by applications in
which all threads use a data block of the same size and
contents (initially, at least). These data are described by a
Thread Local Storage template.

In addition to the template, an array of callbacks can exist
to provide customized initialization for each thread. Each of
these callbacks is called before the process begins executing
(the DLL_PROCESS_ATTACH event) and after the process
stops executing (the DLL_PROCESS_DETACH event).

The callbacks are also called before a thread begins
executing (the DLL_THREAD_ATTACH event) and after a
thread stops executing (the DLL_THREAD_DETACH
event), unless the DisableThreadLibraryCalls() API has
been called first. In that case, only the process events will
cause the callbacks to be called.

Since the callbacks are accessed via an array that is pointed
to by a table, the address of which is stored in the tenth data
directory in the Portable Executable header, this could be
considered by anti-virus software (and researchers) to be an
entry-point obscuring method (if they are not aware of
Thread Local Storage data).

It is easy to understand why the virus author calls this
technique ‘the hidden entry point’.

Round and Round

The first time W32/Chiton is executed, it checks the event
that caused its execution. The virus replicates only during

VIRUS ANALYSIS

VIRUS BULLETIN JUNE 2002 • 5

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

the DLL_PROCESS_DETACH event, which occurs when
an application is exiting. The reason for this is that the virus
uses the Structured Exception Handler list to gain access to
KERNEL32.DLL. This file is not present in the list at an
earlier time.

After gaining access to KERNEL32.DLL, the virus will
retrieve the addresses of API functions that it requires,
using the increasingly common CRC method to match
the names.

Unlike the authors of some of the other viruses that use the
CRC method, the author of W32/Chiton was aware that
APIs must be stored in alphabetical order, so there is no
need to search the CRC table repeatedly.

Additionally, the virus has support for both ANSI and
Unicode functions merged into a single routine, and selects
the set of APIs that is appropriate to the current platform
(ANSI for Windows 9x and ME; Unicode for Windows NT,
2000 and XP).

The virus searches for files in the current directory and all
subdirectories, using a linked-list instead of a recursive
function. This is important from the point of view of the
virus author, because the virus infects DLLs, whose stack
size can be very small.

Filters

Files are examined for their potential to be infected,
regardless of their suffix, and will be infected if they pass a
very strict set of filters.

The first of these filters is the support for the System File
Checker that exists in Windows 98/ME/2000/XP. The virus
author was aware of the fact that the IsFileProtected() API
requires a Unicode path, while directory searching on
Windows 9x and ME require an ANSI path, so the virus
transforms the path dynamically.

The remaining filters include the condition that the file
being examined must be a character mode or GUI applica-
tion for the Intel 386+ CPU, that the file must have no
digital certificates, and that it must have no bytes outside of
the image.

Touch and Go

When a file is found that meets the infection criteria, it will
be infected. If relocation data exist at the end of the file, the
virus will move the data to a larger offset in the file, and
place its code in the gap that has been created. If there are
no relocation data at the end of the file, the virus code will
be placed here.

The infection will then proceed in one of two ways,
depending on the file type.

For DLLs, the Thread Local Storage method is not used
because a DLL will not call the TLS callbacks if the DLL is

loaded using the LoadLibrary() API (and perhaps the virus
author was concerned about the virus being labelled a
WinNT virus, rather than a Win32 virus). Instead, the entry-
point is altered to point directly to the virus code.

However, for EXE files, the Thread Local Storage method
is used. The virus carries its own Thread Local Storage
directory, which will be used should the target file contain
no directory at all. The virus carries its own callback array
for those hosts whose Thread Local Storage directory
contains no callbacks.

When it encounters a host that already has a Thread Local
Storage directory containing callbacks, the virus will save
the address of the first callback and replace it with the
address of the virus code.

Once the infection is complete, the virus will calculate a
new file checksum, if one existed previously, before
continuing to search for more files.

Once the file searching has finished, the virus will allow the
application to exit by forcing an exception to occur. This
technique appears a number of times in the virus code, and
is an elegant way to reduce the code size, in addition to
functioning as an effective anti-debugging method.

Since the virus has protected itself against errors by
installing a Structured Exception Handler, the simulation
of an error condition results in the execution of a common
block of code to exit a routine. This avoids the need for
separate handlers for successful and unsuccessful code
completion.

Conclusion

It seems that some old dogs can learn new tricks. The
author of W32/Chiton has moved successfully from the
DOS platform to the Win32 platform, found a feature in the
Windows Portable Executable file format that had (until
now) been overlooked by anti-virus developers, and found a
way to exploit it.

Additionally, the virus author distributed a document along
with the virus source, which describes some further
infection methods using Thread Local Storage. Interesting
times lie ahead.

W32/Chiton

Aliases: W32/Shrug.

Type: Direct-action parasitic appender/
inserter.

Infects: Windows Portable Executable files.

Payload: None.

Removal: Delete infected files and restore
them from backup.

